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FUNCTION ALGEBRAS

by

H. L. ROYDEN

Introduction: By a function algebra I shall mean a collection A of

complex-valued functions on a set X such that the (pointwise) sum and

the product of two functions in A are again in A. We shall always

suppose that A contains the constant functions so that A becomes an

algebra with unit over the field of complex numbers. A function algebra

A is called self adjoint if the complex conjugate of each function in

A is again in A, and the theory of self-adjoint algebras is quite

different from that of non-self adjoint algebras. An example of a self-

adjoint function algebra ip given by the algebra of all continuous

complex-valued functions on a topological space X. A thorough descrip-

tion of the theory of such algebras is given in the book by Gilman and

Jerison [27].

My own interest in function algebras arose from the study of

algebras of analytic functions on some sort of an analytic space X.

These algebras are of course very far from being self-adjoint. A con-

siderable amount of effort has gone into the study of certain of these

algebras and of the relationship between algebraic properties of such an

algebra and the analytic structure of the underlying space X. This



includes work by Bers [81, Bishop [10], [12), Chevalley and Kakutani

[43], Edwards [22], Heins [29], Helmer [30], Henriksen [33], Rudin [57],

Wermer [70), [71] and myself [54], [55]. One of the principal purposes

of the present discussion is to give a general treatment of function

algebras into which many of the above results may be fitted.

Another purpose is to illustrate the application of methods frcm

the theory of functions of several ccmplex variables to derive results

about non-self adjoint function algebras. Excellent examples of such

applications are given in the papers by Arens and Calderon [2] and

Rossi [52], and in Section 7 I use a theorem of Arens and mine to illus-

trate these techniques. This theorem describes the one-dimensional

cohcmology of the spectrum of a Banach algebra in terms of the group of

invertible elements of the algebra. It generalizes to arbitrary ccammu-

tative Banach algebras the theorems of Bruschlinsky [18] and Eilenberg

[23],describing the one-dimensional cohomology of a compact set X in

terms of C(X).

The topics discussed here are influenced by my own interest, and

because of the excellent suu.,ry by Wermer [76] I have omitted discus-

sion of much of the work of Wermer, Bishop, and Rossi.
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1. Algebras and their spectra. Let X be a set of points and

A an algebra of complex valued functions on X. We shall always assume

that 1 belongs to A and that the functions of A separate the points

of X. If X is a topological space, we shall also suppose that each

element in X is continuous.

By the spectrum Z = Z(A) of A we mean the set of all non-

zero homomorphisms of A into the complex field. The set X is im-

bedded in E if we identify each x E X with the homomorphism

f - f(x). There is a natural isomorphism of A with an algebra

of functions on E defined by (n) = A(f) for n e E and f E A.

The algebra A then consists of the restrictions to X of the

elements of A.

It is often convenient to topologize E by using the weakest
A

topology under which the elements of A are continuous. We refer to

this topology as the Gelfand topology for E. It is always Hausdorff,

and the natural embedding of X into Z with the Gelfand topology is

a continuous mapping, although the topology of X may be stronger than

the topology it would have as a subspace of E with the Gelfand

topology. If X is compact, however, this natural embedding must be

a homeomorphism into Z with the Gelfand topology. The following

lemma gives a condition for the compactness of Z in the Gelfand

topology:

Lemma 1. The spectrum E of a function algebra A is compact

Ain the Gelfand topology if and only if each element of A is bounded

on E.
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Another entity which can be associated with A is the set

of maximal ideals of A. Since each element of E is uniquely charac-

terized by its kernel, which is a maximal ideal, we may consider Z to

be (identified with) a subset of o Proposition 3 gives a condition

for this subset to be all of



2. Divisibility properties of function algebras. In this

section we explore some of the consequences of various relations between

zeros of elements of a function algebra and their divisibility proper-

ties. Here we consider the spectrum Z of an algebra as a set without

a topology. Some of the properties which a function algebra A on a

set X may possess are the following:

(ao) If f E A, and sup If(x)l < 1, then I - f has an
x EX

inverse in A.

(a) If f e A and if f is never zero, then f has an

inverse in A.

(P) If fl' " , fn are elements of A with no c oon zeros,

then there are elements g1 ' "'" , gn in A such that

glfl + ... + gnfn = 1.

(Y) If f E A and f is not identically zero, there are a

finite number of functions fl' "" , fn in A which separate the

zeros of f.

If A has property (a) we say that it is inverse closed. If it

has the property (ao) we say that it is weakly inverse closed. Note

that (0) implies (a) and (a) implies (ao). If A is closed under

uniform convergence, then (a ) holds.

Proposition l. If the algebra A has property (ao), then for

each f E A and each A c E(A) we have

Itfi < sup •f(x)I
x E X
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Proof: Suppose that for all x e X we have lf(x) - M <co.

Then for each complex number X with IlI > M, we have

sup IX fli< l, and so 1 - 1 f has an inverse g in A. Thus

1 = 7T(1) = lt[g(l - X-1 f)] _(g) 7(l - ,-1 f) = 3X(g) [1 - X-1 A(f)],

and consequently 0 A i - X-1 x(f). But this means icf A X. Since

this holds for every X with Ilxi > M, we must have Infj _ M,

proving the proposition.

Combining this proposition with Lemma 1 we have the following

corollary:

Corollary: Let A be a function algebra with property (o).

Then the spectrum E(A) is compact (in the Gelfand topology) if and

only if each f in A is bounded.

A slight modification of the proof of Proposition 1 gives us

the following consequence of property (ax):

Proposition 2: Let A have property (a), and let w c E(A).

Then

Af f[X]

The following proposition gives some evidence of the effect of

completion of a function algebra on its spectrum.

Proposition 3: Let A be an algebra of bounded functions

having property (a 0). Then the spectrum and maximal ideal space of A

coincide with the spectrum of A, the completion of A under uniform

convergence on X. Moreover, the Gelfand topologies of E(A) and

E(A) also coincide.
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Proof: Proposition 1 implies that each homomorphism v in E(A)

is continuous in the sup norm for A (i.e., the norm defined by

jjfjj = sup If(x)l). Hence each 71 E E(A) has a unique extension to
XE X

a homomorphism in E(T). Conversely, each 71 in z(A-) is the unique

continuous extension of 7t restricted to A. Thus z(A) and E(A-)

coincide. The Gelfand topology for E(T) is by its definition stronger

than the Gelfand topology for Z(A). Since the latter is Hausdorff,

while the former is compact by the corollary of Proposition 1, the two

topologies are the same.

Let I be a maximal ideal of A. It follows from (o) that

the completion I in A of I is an ideal which does not contain 1.

From the fact that A is a Banach algebra we deduce (25] that there is

a homomorphism of A onto C whose kernel contains Y. The re-

striction of this homomorphism to A has kernel I, and so the set

of maximal ideals of A coincides with the spectrum of A, proving

the proposition.

Proposition 4: Let A be an algebra of functions on a set X.

If X is the set ? of maximal ideals of A, then (0) holds.

Proof: Let f1, ... , fn be a finite set of functions such

that 1 cannot be expressed as E e f i . Then the ideal generated by

f 1, ... , fn  is proper and thus contained in a maximal ideal. By

hypothesis there is a point x such that this maximal ideal consists

of all functions vanishing at x. Thus x is a common zero of

f fn' and consequently (0) holds proving the proposition.
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Proposition 5: Let A be an algebra of continuous functions on

a compact space X. Then X is the spectrum of A if and only if A

has property (p).

Proof: If X is the spectrum of A, then X is also the

maximal ideal space of A by Proposition 3. Hence (P) holds by

Proposition 4.

Let us assume on the other hand that A has property (W),and

let I be a maximal ideal of A. Then (P) implies that any finite set

of functions of I have a comcon zero. Since X is compact, this

implies all functions of I have a common zero x. Since I is

maximal, it must be the ideal consisting of all functions vanishing

at x. Thus .(A) coincides with X, proving the proposition.

Proposition 6: Let A be a function algebra on a set X, and

suppose that A has properties (P) and (y). Then X is the spectrum

of A.

Proof: Let i be an element of the spectrum of A and f an0

element of the kernel of n which is not identically zero. (Such an

element must exist unless X consists of a single point.) By (y)

there are functions fl1' "'" fn which separate points of the set

(x : f(x) = 0). Subtracting suitable constants, we may take the

functions f1, ... , fn to be in the kernel of v. Since (P) implies

that any finite set of functions in a proper ideal have a common zero,

there is a point x E X such that fi(x) = 0, 0 < i < n. On the other

hand the functions fo fi, "'" ' fn cannot vanish simultaneously at

any other point of X because of the fact that f 1  ... I fn separate

the zeros of f . If now g is any function in the kernel of i[, ()
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implies that g must have a zero in common with fof 1 , 0 ." f fn"

Hence g(x) = 0. But for any g e A, the function g - og is in the

kernel of v, whence g(x) = ng. Thus 7t is the evaluation at x,

proving the proposition.
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3. Homomorphisms of function algebras. Let A and B be two

function algebras on topological spaces X and Y, and let h be a

homomorphism of A into B. Then for each homomorphism v e E(B) we

have a homomorphism (n) in Z(A) defined by c(i) = A-h. Thus for

each y E Y and f e A we have f( (y)) = (hf) (y). We call the

mapping p the adjoint of h (and sometimes write ( = h*). If we

use the Gelfand topology for E(A), then q is a continuous map of

E(B) into E(A), and its restriction to Y is a continuous map of Y

into E(A).

If we know that the space X, considered as a point set without

topdlogy is the spectrum of A, then the adjoint mapping c of h is

defined as a mapping of Y into X. Under what conditions can we say

that it is continuous? If X is compact, then it must already have

the Gelfand topology, and so q is continuous. We state this as the

following proposition:

Proposition 7: Let A be a function algebra on a compact set

X, and suppose that X, as a point set, is the spectrum of A. Let B

be a function algebra on a topological space Y, and let h be a

homomorphism of A into B. Then there is a unique continuous map p

of Y into X such that

(hf)(y) = f(p(y))

Even when X is not compact and does not have the Gelfand

topology we can sometimes insure the continuity of ( as follows:

For a function algebra A on X we define the following condition:
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(8) The space X is metrizable, and for each sequence < x n>

from X which does not converge there is an f in A such that the

sequence < f(xn) > does not converge.

Proposition 8: Let A and B be function algebras on the

metrizable spaces X and Y. Suppose that X (as a point set) is the

spectrum of A and that condition (8) holds. Then there is a unique

continuous mapping q) of Y into X such that (hf)(y) = f(q(y)).

Proof: Only the continuity of q needs to be established.

Since X and Y are metrizable, it suffices to show that q takes

convergent sequences into convergent sequences. Let < Yn > be a

convergent sequence in Y with limit y. Then for each f E A we

have f(Vq(yn)) = (hf)(yn), which converges to (hf)(y) = f(q(y)).

Since this holds for each f E A, condition (5) implies that the

sequence < q(yn) > converges to some element x in X. Since

f(x) = f(q(y)) for all f e A and A separates points of X, we

have x = (p(y). Thus T is continuous, proving the proposition.

An extension of the mapping properties in these propositions

can be gotten as follows: Let D be a directed set under a quasi-

order <, and suppose that to each a e D there is assigned an

algebra A. and that to each pair of elements a in D there is

a homomorphism ha : A A such that for each a we have ha the

identity and for a Y ' we have hy . ho = hy. Then the system
P a a

(A , ho ) is called a direct system of algebras. For each such directaa

system there is an algebra A called the direct limit of the system

and a family of homomorphisms ha : A -*A such that
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(i) h3 hp = h for a.

(ii) A = Range ha

These two properties characterize A to within isomorphism.

If we suppose that to each a we have assigned a topological

space X and that to each pair a we have assigned a continuous.a

mapping X a: X such that ais the identity and Ya Yp

for a< P y ', then we call (Xa, %) an inverse system of topo-

logical spaces. For each such inverse system we define a topological

space X, called the inverse limit of the system, by taking X to

consist of those elements x = (xQ) of the direct product X Xa which

satisfy P(x x for a P. We define the projection

P X -+X by setting q(x) = x~ We have = q) for a,< P.

The topology in X may be defined either by considering X as a

subspace of the topological product X Xa or equivalently by taking

the weakest topology such that the projections Ta are all continuous.

For further details concerning direct and inverse systems and their

limits see (24] and [42].

Proposition 9: Let (Aa h a be a direct system of algebras

with direct limit A, and let (Xa C) be the inverse system

obtained by taking Xa to be the spectrum of Aa and % to be the

adjoint of ha. Let X be the inverse limit of this system. Then X

is the spectrum of A and the projections (Pa of X into X n are

the adjoints of the projections ha of AC into A.
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Proof: Let x e X, and f e A. Then there is an a and an

fa An such that f = ha(fa). Define x(f) to be a(x)(fa). Then

x(f) is readily seen to be independent of the choice of a and to

define a homcmorphism of A onto the complex numbers, i.e. x E Z(A).

On the other hand, each y 4 Z(A) comes from that x E X whose

coordinates (xa) are given by xa A o ha. Thus we have a natural

correspondence between X and E(A), and it follows from this con-

struction that the projections Ta and h are adjoint.

The principal use we make of direct systems is the following:

Let A be an algebra and D the set of all finite subsets of A

directed by inclusion C If a = (f1, . fn) we let An  be the

subalgebra of A generated by a. For a C P, we have A CAPP

and we take ho to be the inclusion map of A into A Then
a a

(Aa. hp) is a direct system whose direct limit is A and for whichCa,

the projection ha : Aa -+ A is Just the inclusion of Aa in A.

By the subalgebra Aa "generated" by a we may mean either

(i) the subalgebra consisting of all polynomials P(f1, ... , fn) of

the elements of a, (ii) the subalgebra consisting of all elements

g in A such that g = P Q-1 where P and Q are polyncmials in

f 1 ,..., fn' and Q has an inverse in A, or (iii) the closure of

the subalgebra in (i) in the case when A is a Banach algebra. For

our purposes it is more convenient to take one of the latter notions,

since we would like for Aa to have a compact spectrum if A does.

In (iii) the algebras A are themselves Banach algebras.

15



4. Some examples of function algebras. In this section we give

some examples of function algebras which illustrate the various prop-

erties discussed in the earlier sections.

Example 1: Let X be an open set in the plane or on a non-

compact Riemann surface, and let A be the algebra of all analytic

functions on X. Then A has properties (a), (P), (y) and (5).

(cf. [29], [54], [55]). Thus it follows by Proposition 6 that X is

the spectrum of A. If Y is another such open set on a Riemann sur-

face and B the algebra of all analytic functions on Y, then by

Proposition 8 every homomorphism h of A into B arises from a

unique continuous mapping qp of Y into X so that

(hf)(y) = f(q(y)). If we make use of its continuity, the mapping q

is easily seen to be analytic and we have the results of [541 and [55].

Example 2: Let X be a Stein manifold [19] and A the algebra

of analytic functions on A. Then the algebra A satisfies (0)

(cf. [19], p. 11), and it can be shown that the spectrum of A is X

([22], p. 512). It follows from Corcllary 4 of [191 that A satisfies

property (5). If Y is another Stein manifold and B the algebra of

analytic functions on B, then every homomorphism h of A into B

is, by Proposition 8, induced by a continuous mapping p of Y into

X such that (hf)(y) = f(q(y)). We thus obtain the principal theorem

of [22].

The discussion in Examples 1 and 2 shows the utilization of

Proposition 8 to get the continuity of the mapping p without knowing

that the Gelfand topology for X coincides with the original topology

14
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of X. Remmert has recently shown that every non-compact Riemann

surface can be properly (in the sense of Bourbaki) embedded in C3 and

n
each Stein manifold in some C . From this it follows that the Gelfand

topology for X in Examples 1 and 2 is in fact the original topology

for X.

Example 3: An algebra in which (ao) does not hold is the

following: Let X = [0,1] and let A consist of all continuous

functions on [0,1] which can be expressed in the form

P(x,ex)/Q(x,ex), where P(x,y) and Q(x,y) are polynomials in x

and y with Q not (ivisible by y. Then the spectrum of A is X,

while the ideal generated by e is a maximal ideal whose quotient

field is isomorphic to the field of all rational functions of one

indeterminate over the complex numbers. This ideal together with the

points of [0,11 constitute the set of maximal ideals of A.

Example 4: Let X be the bicylinder (< zlZ 2 > : Iz11 <1,

Iz2 1 < 1 in the space C2 of two complex variables, and let A be

the algebra consisting of those functions which are continuous on X

and analytic in the interior of X. Then A satisfies (a), (P), and

(Y), and its spectrum is X. Since X is compact, its topology is

the Gelfand topology induced by A.

Example 5: Let Y be the boundary (< z, z 2 >

iz( <1, jzo = 1) or (1z11 1, 1z21 <1)1 of the bicylinder,

and let B be the algebra consisting of the restrictions to Y of the

functions in the algebra A of the preceding example. Then B has

property (a) but not (0). The spectrum E(B) can be identified in a

natural way with X, and with A.
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Example 6: Let X be the unit disc Izi < 1, and let A be

the algebra of all functions which are analytic in IzI < 1 and con-

tinuous on X. Then the spectrum of A is X. Let A' be the algebra

on X which consists of all uniform limits of polynomials in z and

Izi. Then A' is a super-algebra of A, but the spectrum of A' is

homeomorphic to the cone Izi < t < 1. If we let A" be the algebra

of all continuous functions on X, then A" is a Buper-algebra of A',

but its spectrum has shrunk back down to X again. This example is

suggested by a remark in [511.

Example 7: Let X be the set of non-negative integers and A

the algebra of all complex-valued sequences < a > which aren

ultimately constant, i.e., those sequences for which there is an N

such that an = aN for all n > N. Then A satisfies (0) but not

(y). The spectrum of A consists of X together with the homo-

morphism c defined by Os< a >) = lim a nn n
n -+o

Example 8: Let X be a completely regular space, and let A

be the algebra of all continuous complex valued functions on X. Then

A always satisfies (0), while the spectrum of A is the Q-closure of

X introduced by Hewitt [3 ).

Example 9: Let A be the algebra of all bounded analytic

functions on the unit disc tz : Izj < 1) in the complex plane. This

algebra and its spectrum have been discussed in some detail by

I. J. Schark [63]. Further details are given in Hoffman [37].

n a
Example lO: Let U= a where the a, 8 are real-

valued differentiable functions of the xi's. The set of all
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differentiable functions defined in a region R and satisfying Uf = 0

there forms an algebra, and if R is sufficiently small, the spectrum

of this algebra is just the set of characteristics of U lying in R.

This set can be given a differentiable structure and then the algebra

consists of all differentiable functions on the set of characteristics.

Example 11: If we let the coefficients of U in the preceding

example be complex valued, then by [49] the algebra of solutions will

in general have a spectrum which is a subset of the space of (n-l)

complex variables with the algebra represented as all functions con-

tinuous on the spectrum and complex analytic in the interior. If, for

example, U 1 + i + i(x I + ix2 ) -, then the spectrum of
1, 2 3

the algebra of functions which satisfy Uf = 0 in the sphere

2 + x2 + x5 <1 is the region in the space of two complex variables
x+x2 + 3-<

given by

lz 2 <- 1z1 2

(Re z2 )2 + Izl12 < 1,

and the algebra is represented by all functions which are complex

analytic in this region and sufficiently smooth on the boundary. All

solutions of the equation Uf = 0, are obtained by taking such a

function and replacing zI by xI + ix2  and z2 by x3 - i(x 2 + x).

Further examples of function algebras and their properties are

given by Hoffman and Singer [39]. Interesting special examples are

treated by Bishop [10] and by Stolzenberg [67].
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5. Boundaries for function algebras. Let A be a function
V

algebra with compact spectrum E(A). Silov [261 has shown that there

is a closed set YCE(A) with the property that sup If(y)j =

yC Y

= sup If(x)l and that if any other closed set ZC E(A) has this
xc E(A) V

property then YC Z. This set Y is referred to as the Silov boundary

for A. If A is a function algebra on a compact set X and if A

is weakly inverse closed (satisfies property (a0)), then it follows

from Proposition 1 that the Stlov boundary Y for A is contained

in X. Numerous examples are given in [39].

Bishop [12 has shown that for a uniformly closed function

algebra A on a compact metric space X the set M consisting of

those points in X, each of which is the unique maximum of sme f

in A, has the property that sup lf(x)l = sup If(y)l for each
xE X ye M

f in A. Further properties of this Bishop boundary are discussed

in [17].

6. Dirichlet algebras, A function algebra A on a compact

set X is called a Dirichlet algebra [28] if the real parts of functions

in the algebra are dense (in the sense of uniform convergence) in the

space C(X) of all continuous functions on X. Interesting results

concerning Dirichlet algebras have been obtained by Wermer [75], [76]

and a nice treatment of their properties can be found in Hoffman [37].

A generalization due to Hoffman [38] is the concept of a log-

modular algebra which is an algebra A on a compact space X such

that the logarithms of the absolute values of the invertible elements

in A are dense in C(X). Hoffman shows that many of the most

important properties of Dirichlet algebras are also shared by the log-

modular algebras. 18



7. The one-dimensional cohomology of the spectrum. This section

is devoted to a proof of a theorem of Arens and myself which says that

for certain algebras A the one-dimensional Cech cohomology group over

the integers of the spectrum of A is isomorphic to the quotient of the

group of units in A by the subgroup of exponentials. Proposition 12

states this result for a class of function algebras and the following

theorem states that this is also true for every commutative Banach

algebra. These theorems and their proofs are given here not only because

of their intrinsic interest, but also because the proof gives an excel-

lent illustration of the application of the theory of functions of

several complex variables to obtain results in function algebras.

We begin by describing a canonical homomorphism n of the non-

zero continuous complex-valued functions on a paracompact space X in

the one-dimensional cohomology group H(X,I) of X with integer co-

efficients. Let C be the sheaf of germs of continuous functions on

X (with additive group structure), the sheaf of germs of con-

tinuous non-vanishing functions on X (with multiplication as the

group operation), and I the constant sheaf of integers on X. If

exp is the mapping f -+ e , then we have the following exact

sequence of sheaves

exp *

Hence we have the exact sequence of cohomology groups [35]:

o--> H°(X,I)--> H°(X, -- H°(X, ')-- H'(X,I)

>i'A(x, C) = o ,

19



the last group being 0 since C is a fine sheaf [351. Thus we have

a homomorphism Tj of the multiplicative group of continuous functions

on X which do not vanish anywhere onto the group Hl(XI).(cf.[23]). The

kernel of q consists of the range of the exponential mapping, i.e.

of those g for which there is a continuous function f such that

g = exp f. Note that if g is a continuous function on X and

Ig -
< e < 1, then g has a continuous logarithm, and qg = 0.

It is readily verified that the mapping n is functorial in the

sense that, if Y is another paracompact space, then for each con-

tinuous mapping ( : Y -4 X the adjoint mappings q,* : H1 (X,I) -- H1 (Y,I)

and p*: C(X) -4 C(Y) commute with n, i.e. T* = )*q

We shall need two results from the theory of several complex

n
variables about analytic functions on polynomially convex sets in C

A compact set X in the space Cn  of n-complex variables is said to

be polynomially convex if given y A X, there is a polynomial p such

that

1p(y)j > sup Ip(x)I •
xE X

If : is the sheaf of germs of holomorphic functions on X,

Theorem B of Cartan [19] states that H1 (X,Lr) = 0. From this we

derive the following lemma:

Lemma 2: Let X be a compact polynomially convex set in C

Then the multiplicative group of non-vanishing holomorphic functions

(i.e. of continuous functions which have an extension which is holo-

morphic in a neighborhood of X) is mapped onto H'(X,I) by the

20



I

mapping 1. The kernel of q consists of functions which are ex-

ponentials of holomorphic functions on X.

Proof: Let be the sheaf of germs of non-vanishing holo-

morphic functions on X. Then we have the exact sequence

from which we obtain the exact sequence

exp q
-> H°(x,C)-; H°(x, (! )-> H1(XI) >H A(X, 0,

the last group being zero by Theorem B. But H°(X, C*) is just the

multiplicative group of non-zero holomorphic functions on X, and the

exactness of the sequence is precisely the conclusion of the lemma.

We shall also need the following lemma. This lemma is standard

and is an easy consequence of corollaire 4 of [19], and we omit the

proof.

Lemma 3: Let X be a compact polynomially convex set in Cn

and f a holomorphic function on X, i.e. on a neighborhood of X.

Then f can be uniformly approximated on X by polynomials.

If A is a function algebra, the units in A are the functions

which are never zero on the spectrum X of A. Thus q maps the

units in A into H(X,I). We are now in a position to prove a pre-

liminary proposition:

Proposition 10: Let A be a finitely generated algebra with

compact spectrum X, and suppose that A is closed under uniform
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convergence on X. Then n maps the group M of units in A onto

Hl(XI) and the kernel of n is the range E of the exponential

flanction on A.

Proof: Let fl' "'" ' fn be the generators of A. Then A

consists of those functions on X which are uniform limits of poly-

ncmials in (f1, '" ' fn). Let F be the mapping of X into Cn whose

components are fl' ' 'n . Since A separates points of X, and

each element in A is a uniform limit of polynomials in tne fi' it

follows that the fi separate points in X. Thus F is a homeo-

morphism of X onto a compact set in C n, and if we identify X

with FIX], the algebra A becomes the algebra of uniform limits of

n n
polynomials on a compact subset X of C . If for some y E C we

have

py < sup IJp(x)
xcX

then the homomorphism n defined on polynomials by

A(p) = p(y)

extends to a homomorphism on A. Thus y is in the spectrum of A.

Since X is the spectrum of A there is an x in X such that

p(y) = p(x) for all polynomials p. But this implies y = x and

nhence y c X. Thus X is a polynomially convex subset of C

It follows from Lemma 3 that all functions which are holomorphic

on X are in A. Since the group M of units of A is the set of

functions in A which are never zero, M contains all holmorphic
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non-vanishing functions on X, and Lemma 2 implies that n maps A

onto H'(X,I).

Let g be a function A which is never zero on X, and let

E = inf Ig(x)I on X. Since A is the closure on X of the poly-

nomials, there is a polynomial p on X such that Ig - PI < 6/2.

Thus p is a non-vanishing holomorphic function on X, and

p = gil - (g-p)/g]. Since l(g-p)/gl < 1/2, we have n[l - (g-p)/g] = 0,

and consequently r(p) = n(g) = 0. Hence by Lemma 2 there is a holo-

morphic function h on X such that p = exp h. Since A is uniformly

closed, the series

ngn
ng

converges to a function k in A, and 1 - (g-p)/g = exp (-k). Thus

g = exp (h + k). This shows that the kernel of n is the subgroup of

exponentials, proving the proposition.

The next proposition removes the restriction that A be finitely

generated. The method of proof is typical of the manner in which

propositions about finitely generated algebras can be generalized.

Proposition 11. Let A be a uniformly closed function algebra

with compact spectrum X. Then n maps the group M of units of A

onto H'(X,I) and the kernel of n consists of range E of the

exponential mapping on A.
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Proof: Let (A a ) be the system of finitely generated' sub-

algebras of A directed under inclusion. If a , i.e. if

Aa C A3, we define h to be the inclusion mapping. Then A is the

direct limit of the direct system (A ; h) of algebras.
xa

Let Xa be the spectrum of Aa) and be the adjoint of

ho Then by Proposition 9 the spectrum X of A is the inverse

limit of (Xa, P), and the projections cp of X onto Xa are the

adjoints of the projections h of A. into A. Moreover [42], the

group H = H1 (XI) is the direct limit of the direct system of groups

(Ha, *) where Ha = H'(Xa, I). Thus if y c H, there is an a

and an element 7. c Ha such that = .7'a By Proposition 10 there

is an f E A such that 7a - qf. Thus

* % nf = nqlw = T(f la)

But fcq is a non-vanishing function in A. Thus 1 maps M onto

H1(X, I) .

Suppose now that f is a unit in A and that nf = 0. Then f

is also a unit in the algebra Aa generated by f and f-l. Let f5

be the element f of A considered as a function on the spectrum

Xa of Aa . Then f = ha fa' and

0 = nf = * if n

'Here we mean an algebra A. which is the uniform closure of all

polynomials in a given finite set of elements of A.
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Since H is the direct limit of the groups H,, there must be a

a a such that

9a a

Hence

0 = T(h f)0

Thus ho f is an element of A which is mapped into zero by n.a a o
Thus by Proposition 10 there is a g in A such that hp fx = exp g.

But this implies that f = h hp f = h exp g = exp(g@g). Thus f is
P a hPgeP ow)

the exponential of an element of A, proving that the kernel of is

the range of the exponential function on A.

We now extend this last proposition to a class of algebras which

we do not assume to be uniformly closed.

Proposition 12: Let A be an algebra with compact spectrum X,

and suppose that A as a function algebra on its spectrum is inverse

closed. Then n maps the group M of units of A onto (X,I).

Suppose further that for each f e A the function exp f is in A.

Then the kernel of q is the uniform closure of the range of the

function exp on A. If in addition A has the property that if

If - 11 < 1/2 then f = exp g for g e A, then the kernel of n is

just the range E of the exponential function on A. Thus if A

satisfies these two conditions we have

H1(x I) ~ WE
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Proof: Let A be the algebra on X which is the uniform

closure of A. Since A is inverse closed, X is also the spectrum

of A by Proposition 3. For each 'y e H1 X,I) there is a non-

vanishing function f in A such that If = 7. Let e = min Ifl,

and let g be an element of A such that If - gj < e/2. Then g

does not vanish on X, and

g = If + n[i - (f-g)/f]

= If ,L

since j[1 - (f-g)/fI must be zero because I(f-g)/fI < 1/2. This

shows that 1 is onto HI(XI).

Suppose that f is a non-vanishing function in A and If = 0.

Then by Proposition 11 there is a function h e A such that f = exp h.

Since h can be approximated by elements in A, f can be approximated

by exponentials of functions in A. Thus if the exponential function

is defined on A, we have the kernel of I equal to the uniform

closure of the range of exp.

In particular, if If = 0, we can find a g in A such that

If - exp gi < 1/3 min f. Then Ii - f exp(-g)l < 1/2. But if A

satisfies the last condition of the proposition, then

f exp(-g) = 1 - [1 - f exp(-g)] = exp(h) for some h in A. Then

f = exp(g + h), and f is in the range of exp. This proves the

proposition.

Even if A is not a function algebra, we can define a mapping I

of the group of units of A into H'[E(A),Il by defining If to be

T , where is the representation of f as a function on E(A).
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The following theorem (due to Arens and myself) shows that the con-

clusion of the last proposition is true for arbitrary commutative Banach

algebras.

Theorem: Let A be a commutative Banach algebra with spectrum

X. Let M be the group of units in A and E the range of the

exponential function on A. Then

HI(xI) t M/E°

Proof: Let f -, f be the mapping which associates to each f

in A the function f on X defined by f(v) = vf. Let A be the

image of A under this mapping. Since X is the space of maximal

A
ideals of A, the algebra A is inverse closed and each nowhere zero

function in A is the image of a unit in A. Thus j maps the group

M of units of A onto HI(X,I) by Proposition 12. Since A is a

Banach algebra, the function exp is defined and takes elements of

into elements of A. Thus by Proposition 12 a unit f of A is

A
mapped into zero by n if and only if f is the uniform limit of

A

functions g where g = exp h with h in A. Choose g of this

form such that sup - g < 1/3 inf III. Then 1 - W 1 < 1/2,

and so (50] we have

1-i- l - fg-1)nll1 / n < 1/2

Thus the series

n
n=l
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converges in A to an element k, and we have fg-i = exp (-k). Thus

f = exp (h - k), and f is in the range of the exponential function.

The method used to derive Proposition 10 from Cartan's

Theorem A can also be used to derive the following proposition about

certain algebras whose spectra are not compact. Remembering that every

open Riemann surface (and a fortiori every plane domain) is a Stein

manifold, this proposition gives a result of Rudin's as a special

case [58].

Proposition 13: Let A be the algebra of all holomorphic

functions on a Stein manifold X, let M be the multiplicative group

of nowhere vanishing functions in A and let E be the range of the

exponential function on A. Then

HI(xI) 1 M/E
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